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Chapter 1

INTRODUCTION: VECTOR
ALGEBRA

1.1 Definitions

A vector may be defined in essentially three different ways: geometrically, analytically and ax-
iomatically.

Definition 1.1.1. Geometrically, a vector is defined as a collection of equivalent line segments.

Equivalence, in this case, means that the line segments have the same magnitude/length and
are parallel. Thus, a vector is characterised by its direction and magnitude/length.

Under this definition, the algebraic operations on vectors are introduced and studied geometri-
cally, making maximum use of our geometric intuition.

Definition 1.1.2. In the analytic approach, a vector in three-dimensional space is defined as an
ordered triple of real numbers (A1, A2, A3) relative to a given coordinate system. The real numbers
A1, A2, A3 are called the components of the vector.

By far this approach is the most convenient for theoretical and computational considerations.
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The axiomatic definition of a vector is left out as an exercise for you.

On the other hand, those quantities that are characterised by numerical magnitude alone, and
have nothing to do with direction, are called scalars or scalar quantities. In order to distinguish
vectors from scalars, we will use letters with an over-bar Ā, B̄, C̄, · · · , ā, b̄, c̄, · · · , to denote vectors.
In these typed notes I will be using boldfaced letters A,B,C, · · · ,a,b, c, · · · .

In this course, we shall use mainly the analytic definition of a vector, occasionally giving the
geometric interpretation of our results. Accordingly, we assume a (right-handed) coordinate sys-
tem in our three-dimensional space. The coordinate system is said to be right-handed if the so
called Right-hand Rule (to be demonstrated in class) holds.

Definition 1.1.3. For any given (three-dimensional) vector A such that

A = (A1, A2, A3),

A1 is called the first component, A2 is called the second component, A3 is called the third component
of the vector A.

Definition 1.1.4. A vector whose components are all zero is called the zero vector and is denoted
by 0 or 0̄, that is, 0 = (0, 0, 0).

Definition 1.1.5. The magnitude of a vector A = (A1, A2, A3), denoted by |A|, is the real number
defined by

|A| =
√
A2

1 +A2
2 +A2

3 (1.1)

Definition 1.1.6. A vector whose magnitude is unit (or 1) is called a unit vector.

For any vector A, the corresponding unit vector, denoted Â, is given by

Â =
A

|A|
. (1.2)

From (1.2) we deduce that the vector A can be expressed as

A = |A|Â. (1.3)

1.2 Vector Algebra

Let us consider the Cartesian coordinate system in space, obtained by introducing three mutually
perpendicular axes, labeled x, y, z, with the same unit of length along the three axes. The unit
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vectors in the positive x-, y- and z-directions are denoted by î, ĵ and k̂, respectively. Thus, a vector
A can be expressed in the form

A = A1î +A2ĵ +A3k̂. (1.4)

The numbers A1, A2 and A3 are called the orthogonal projections or components of A in the
x-, y- and z-directions, respectively.

Two vectors A = A1î +A2ĵ +A3k̂ and B = B1î +B2ĵ +B3k̂ are said to be equal if

A1 = B1, A2 = B2, A3 = B3.

Exercise: If |A| = |B|, is it necessarily true that A = B?

1.2.1 Addition of vectors

Vector addition proceeds componentwise, that is

A + B = (A1 +B1)̂i + (A2 +B2)̂j + (A3 +B3)k̂.

It follows that addition of vectors satisfies the commutative law

A + B = B + A,

and the associative law
A + (B + C) = (A + B) + C,

for any vectors A,B,C.

1.2.2 Scalar multiplication of vectors

λA = λ(A1)̂i + λ(A2)̂j + λ(A3)k̂,

where λ is a scalar.

Exercise: Verify that for any vectors A,B and for any scalars m,n the following hold:

1. m(nA) = (mn)A,
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2. m(A + B) = mA +mB,

3. (m+ n)A = mA + nA,

4. 1A = A,

5. 0A = 0.

An alternatively description of a vector in space is obtained by specifying its magnitude and direc-
tion. The direction can be specified by prescribing the three direction angles α, β and γ between
the vector and the positive x, y and z directions respectively. The magnitude is determined using
the Pythagorean Theorem as

|A| =
√
A2

1 +A2
2 +A2

3.

Exercise: Verify the following formulas, for a vector A = A1î +A2ĵ +A3k̂:

cosα =
A1

|A|
, cosβ =

A2

|A|
, cos γ =

A3

|A|
,

and hence
cos2 α+ cos2 β + cos2 γ = 1.

When the initial point of a vector is fixed, it is called a fixed or localised vector, otherwise it is
a free vector.

1.2.3 The scalar product

The scalar product (also known as the dot or inner product) of two vectors A,B is the number

A ·B = A1B1 +A2B2 +A3B3. (1.5)

Alternatively,

A ·B = |A||B| cos θ, (1.6)

where θ is the angle between the vectors A and B. We can interpret A ·B as

(length of A)× (signed component of B along A).

Since the definition is symmetric in B and B, it can equally be interpreted as

(length of B)× (signed component of A along B).
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Application: If F is a constant force acting through a displacement d, the work done by F is
defined as the product of the magnitude of the force and the component of the displacement in the
direction of the force, that is,

Work done = F · d.

The following properties of the scalar product can easily be verified:

1. A ·B = B ·A,

2. (λA + B) ·C = λA ·C + λB ·C,

3. |A|2 = A ·A.

Exercise 1.2.1. 1. Find the component of the vector 8̂i + ĵ in the direction of the vector
î + 2ĵ− 2k̂.

2. Find the vector in the same direction as î + ĵ whose component in the direction of 2̂i− 2k̂ is
unit.

1.2.4 The vector product

The vector product (also known as the cross product) of two vectors A,B is defined by

A×B = (A2B3 −A3B2)̂i + (A3B1 −A1B3)̂j + (A1B2 −A2B1)k̂. (1.7)

A more convenient formula for the vector product which makes use of the notion of a determinant
of a matrix is as follows:

A×B =

∣∣∣∣∣∣
î ĵ k̂
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣ . (1.8)

Exercises: By applying the definition of a vector product, verify the following

1. î× î = 0,

2. î× ĵ = k̂,

3. k̂× î = ĵ,
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for unit vectors î, ĵ, k̂.

Geometrically, the vector product vectors A,B is defined as

A×B = |A||B| sin θn̂ (1.9)

where θ is the angle between the vectors A,B and n̂ is the unit vector perpendicular to both A
and B. Thus,

A×B

is a vector perpendicular to both A and B. We further observe that the magnitude of the vector
A×B,

|A×B| = ||A||B| sin θn̂| = |A||B|| sin θ|,

which is the area of a parallelogram whose edges are the vectors A and B.
The following properties of the vector product can easily be verified:

1. A×B = −B×A,

2. A× (B + C) = A×B + A×C,

3. A×A = 0.

Equations of lines

The position vector of a point (x, y, z) is the vector r = x̂i+yĵ+zk̂. Geometrically, the position
vector of a point is the directed line extending from the origin to the point.

The equation of a line is completely determined if we know any two points on the line or if we
know a point on the line and the orientation or direction of the line. The direction of the line
can be described by a vector to which the line is parallel. Suppose we wish to find the equation
of a line that passes through a given point (x0, y0, z0) and is parallel to a given non-zero vector
v = v1î + v2ĵ + v3k̂. Let r denote the position vector of an arbitrary point (x, y, z) on the line. if
r0 = x0î + y0ĵ + z0k̂ denotes the position vector of the point (x0, y0, z0), then the vector r − r0 is
parallel to the vector v. Hence there exists a scalar t such that r − r0 = tv. Thus the position
vector r of an arbitrary point on the line is given by

r = r0 + tv, t1 ≤ t ≤ t2. (1.10)

this is a vector equation of the line. The scalar t is called the parameter; and as the parameter
ranges from t1 to t2, the vector r traces the line from one end to the other with t = 0 corresponding
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to the point (x0, y0, z0). Equating the corresponding components of the vectors in (1.10) we obtain
the parametric equations of the line:

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3. (1.11)

If we eliminate the parameter t from the equations (1.11), we obtain the symmetric form of the
equation of the line:

x− x0

v1
=
y − y0

v2
=
z − z0

v3
. (1.12)

Example 1.2.1. 1. Find a vector equation of the line passing through the points (1,−2, 1) and
(3, 1, 1).

2. Deduce the corresponding parametric equations and symmetric equations.

Solution 1.2.1. 1. We note that the line is parallel to the vector

v = (3− 1)̂i + (1− (−2))̂j = 2̂i + 3ĵ.

Let r0 = î− 2ĵ + k̂, then

r = r0 + tv = (1 + 2t)̂i + (3t− 2)̂j + k̂.

2. By equating the corresponding components of the vector equation, we obtain the parametric
equations

x = 1 + 2t, y = −2 + 3t, z = 1.

By eliminating the parameter t, we obtain the equation in symmetric form

x− 1

2
=
y + 2

3
, z = 1.

Exercise 1.2.2. 1. Find the parametric equations of the line that passes through the point
(−1, 3,−2) and is perpendicular to the vectors A = 3̂i + 4ĵ + k̂ and A = î + 2ĵ.

2. Derive the symmetric form (1.12) of the equation of the line from the equation

(r− r0)× v = 0. (1.13)

3. Make notes on the derivation of equations of planes.
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1.2.5 The scalar triple product

The scalar triple product of vectors A, B and C, denoted [A,B,C], is defined by

[A,B,C] = A · (B×C). (1.14)

In terms of the components of the vectors

[A,B,C] =

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣ = A1(B2C2 −B3C2) +A2(B3C1 −B1C3) +A3(B1C2 −B2C1).(1.15)

It is interesting to note that the scalar triple product of three non-zero vectors represents, up to
sign, the volume of the parallelepiped formed by the vectors A, B and C.

Example 1.2.2. Let P: (1,−2, 3), Q: (2, 1,−2), R: (−2, 1,−1) and S: (2, 2, 3) be four given points.
Find the volume of the parallelepiped formed by the vectors A = PQ, B = PR and C = PS.

Solution 1.2.2.

A = î + +ĵ− 5k̂, B = −3̂i + 3ĵ− 4k̂, C = î + 4ĵ.

Thus, the volume of the parallelepiped is

[A,B,C] =

∣∣∣∣∣∣
1 3 −5
−3 3 −4
1 4 0

∣∣∣∣∣∣ = 79.

Exercise 1.2.3. Evaluate [̂i, ĵ, k̂].

1.2.6 The vector triple product

The vector triple product of vectors A, B and C is defined by

A× (B×C) = (C ·A)B− (B ·A)C. (1.16)

Exercise: Prove the identity

|A×B| = |A|2|B|2 − (A ·B)2.
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Chapter 2

DIFFERENTIATION OF VECTOR
FUNCTIONS

2.1 The Vector Function

Definition 2.1.1. A vector function or vector-valued function F(t) is a mathematical rule
that associates a vector F with each real number t in some set, usually an interval t1 ≤ t ≤ t2 or a
collection of intervals (t1 ≤ t ≤ t2) ∪ (t3 ≤ t ≤ t4) ∪ · · · ∪ (tn−1 ≤ t ≤ tn).

In the Cartesian coordinate system, the vector function can be expressed in component form,
say

F(t) = F1(t)̂i + F2(t)̂j + F3(t)k̂ (2.1)

where F1, F2 and F3 are scalar-valued functions of t and are called the components of F(t). For
example, the equation

r = r0 + tv, t1 ≤ t ≤ t2,

of a line that passes through the point r0 and is parallel to the vector v is a vector function of the
parameter t.
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2.1.1 Limit of a vector function

Definition 2.1.2. Let F(t) be a vector function defined in an interval a ≤ t ≤ b (t = t0 is a point
in this interval) and A a constant vector. We say that the limit of F(t) as t approaches t0 is A,
written

lim
t→t0

F(t) = A (2.2)

if and only if for any given real number ε > 0, there is a real number δ > 0 such that

F(t)−A| < ε whenever 0 < |t− t0| < δ. (2.3)

This definition means that the magnitude of F(t) is approaching the magnitude of A and that
the angle between them is approaching zero, provided A 6= 0.

Theorem 2.1.1. If F(t) = F1(t)̂i+F2(t)̂j+F3(t)k̂ and A = A1î+A2ĵ+A3k̂, then limt→t0 F(t) = A
if and only if limt→t0 Fi(t) = Ai, i = 1, 2, 3.

2.1.2 Continuity of a vector function

Definition 2.1.3. A vector valued function F(t) is said to be continuous at a point t = t0 if and
only if

lim
t→t0

F(t) = F(t0). (2.4)

Therefore, F(t) is continuous at t = t0 if and only if, for a given ε > o, there exists δ > 0 such that

|F(t)− F(t0)| < ε, whenever |t− t0| < δ.

If (2.4) holds for all points in its interval of definition, then F is said to be continuous in that
interval.

Theorem 2.1.2. If F(t) = F1(t)̂i + F2(t)̂j + F3(t)k̂ and A = A1î +A2ĵ +A3k̂, then

lim
t→t0

F(t) = A if and only if lim
t→t0

Fi(t) = Ai, i = 1, 2, 3.
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Theorem 2.1.3. If lim
t→t0

F(t) = A and lim
t→t0

G(t) = B, then

lim
t→t0

[F(t) + G(t)] = A + B.

Theorem 2.1.4. A vector function F(t) = F1(t)̂i + F2(t)̂j + F3(t)k̂ is continuous at a point t = t0
if each Fi(t) (i− 1, 2, 3) is continuous at t = t0.

Exercise 2.1.1. Prove the above theorems.

2.1.3 Derivative of a vector function

Definition 2.1.4. The derivative of a vector valued function F(t) at a point t = t0, denoted by

F′(t0) = dF(t)
dt , is defined as the limit

F′(t0) = lim
t→∆t0

F(t0 + ∆t)− F(t0)

∆t
, (2.5)

provided the limit exists.

In terms of components, if F(t) = F1(t)̂i + F2(t)̂j + F3(t)k̂, then (2.5) may be written as

F′(t) = lim
∆t→0

[
F1(t0 + ∆t)− F1(t0)

∆t
î +

F2(t0 + ∆t)− F2(t0)

∆t
ĵ +

F3(t0 + ∆t)− F3(t0)

∆t
k̂

]
.

Therefore, if the components F1(t), F2(t), F3(t) are differentiable, then we have

F′(t) = F ′1(t)̂i + F ′2(t)̂j + F ′3(t)k̂. (2.6)

Thus, a vector function F is differentiable in an interval if and only if its components are all
differentiable in that interval. Further, observe that:

1. The derivative of a vector-valued function is also a vector-valued function.

2. F(t) is continuous in its interval of definition whenever F′(t) exists in that interval.

Theorem 2.1.5. If F(t) and G(t) are differentiable vector functions, then so is their sum F(t) +
G(t), and

d

dt
(F + G) =

dF

dt
+
dG

dt
. (2.7)
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Theorem 2.1.6. If F(t) is a differentiable vector function, and φ(t) is a differentiable scalar
function, then the product φF is a differentiable vector function, and

d

dt
(φF) =

dφ

dt
F + φ

dF

dt
. (2.8)

Theorem 2.1.7. If F(t) and G(t) are differentiable vector functions, then F ·G is a differentiable
scalar function, and

d

dt
(F ·G) =

dF

dt
·G + F · dG

dt
. (2.9)

Theorem 2.1.8. If F(t) and G(t) are differentiable vector functions, then F×G is a differentiable
vector function, and

d

dt
(F×G) =

dF

dt
×G + F× dG

dt
. (2.10)

Note that when differentiating a vector product of two vector functions, one must be careful to
preserve the order of factors, since the cross product of vectors is not a commutative operation.

Exercise 2.1.2. Prove the above theorems.

2.1.4 The partial derivative of a vector function

Consider a vector function F expressed in terms of the Cartesian coordinate system as

F(x, y, z) = F1(x, y, z)̂i + F2(x, y, z)̂j + F3(x, y, z)k̂. (2.11)

Definition 2.1.5. The partial derivative of the vector function F(x, y, z) with respect to x, y, z,
denoted Fx = ∂F

∂x , Fy = ∂F
∂y , Fz = ∂F

∂z respectively, is defined as the limit

Fx = lim
∆x→0

F(x+ δx, y, z)− F(x, y, z)

∆x
, (2.12)

Fy = lim
∆y→0

F(x, y + δy, z)− F(x, y, z)

∆y
, (2.13)

Fz = lim
∆z→0

F(x, y, z + δz)− F(x, y, z)

∆z
(2.14)

provided the limits exist.

Exercise 2.1.3. From the definition of a partial derivative, show that

∂F

∂x
=
∂F1

∂x
î +

∂F2

∂x
ĵ +

∂F3

∂x
k̂.
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2.2 Space Curves and Tangent Vectors

A curve in space may be defined as a set of points (x, y, z) determined by three equations of the
form

x = x(t), y = y(t), z = z(t), (2.15)

where the functions x(t), y(t), z(t) are assumed to be continuous functions of t in some interval
t1 ≤ t ≤ t2. The equations (2.15) are called parametric equations of the curve and t is called the
parameter. To obtain a vector equation of the curve, we consider the position r(t) of each point
on the curve corresponding to the parameter t. since the components of r(t) are precisely the
coordinates of the point, it follows that

r(t) = x(t)̂i + y(t)̂j + z(t)k̂, (t1 ≤ t ≤ t2). (2.16)

Consider the following examples of special space curves:

1. The parametric equation of a straight line is written in vector form as:

r = r0 + tv, (t1 ≤ t ≤ t2). (2.17)

where r0 is the position vector of a fixed point on the line, v is a vector parallel to the line
and t is a parameter such that as t assumes values in the interval (t1 ≤ t ≤ t2), the tip of the
vector r traces out the straight line in space.

2. The vector function

r(t) = (1 + a cos t)̂i + (1 + a sin t)̂j, (0 ≤ t ≤ 2π), (2.18)

represents a circle of radius a and center at the point (1, 1). The corresponding parametric
equations of the circle described above are:

x = 1 + a cos t, y = 1 + a sin t (0 ≤ t ≤ 2π). (2.19)

By eliminating the parameter t from the parametric equations we obtain

(x− 1)2 + (y − 1)2 = a2 (2.20)

which is the standard equation of the circle in Cartesian coordinates.
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2.2.1 Orientation of space curves

A curve that is represented in parametric or vector equation can be given one of the two possible
directions with respect to the parameter t in a natural way. The positive direction on the curve
is the direction in which the curve is traced as the parameter t increases from t1 to t2. The opposite
direction is called the negative direction.

A curve on which direction has been prescribed is said to be oriented.

The parametric representation of of a space curve is not unique. This means that it is possi-
ble, if we so desire, to change the parameter t in equation (2.15) or (2.16) to another parameter,
say s, by setting t = f(s) where f is any differentiable scalar function such that f ′ 6= 0, without
changing the curve itself.

2.2.2 Tangent vector on a space curve

Let C be a space curve represented represented by the equation

r(t) = x(t)̂i + y(t)̂j + z(t)k̂, (t1 ≤ t ≤ t2), (2.21)

where the functions x(t), y(t), z(t) are continuously differentiable in t1 ≤ t ≤ t2. By definition,

d

dt
r(t) = lim

∆t
→ 0

r(t+ ∆t)− r(t)

∆t
. (2.22)

We call the vector represented by dr(t)
dt a tangent vector to the curve at the point corresponding a

value of the parameter t. The vector

T̂ =
r′(t)

|r′(t)|
(2.23)

is called the unit tangent vector. In terms of its components, this unit tangent vector is given
by

T̂ =
x′(t)̂i + y′(t)̂j + z′(t)k̂√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2
. (2.24)

For example, the curve defined by the vector equation

r(t) = a cos t̂i + a sin t̂j + btk̂, (t ≥ 0),

14



where a and b are positive constants, can be expressed as x2 + y2 = a2. We see that the curve
lies on the lateral surface of a circular cylinder of radius a whose axis is the z-axis. Moreover, as t
increases the coordinate z increases since b > 0. Therefore, as t increases, the curve spirals upward
around the cylinder in the counterclockwise direction as view from atop the positive z-axis. The
curve is called a circular helix.

a tangent vector to the curve for any value of t (t > 0) is given by

r′(t) = −a sin t̂i + a cos t̂j + bk̂.

The unit tangent vector is

T̂ =
a(− sin t̂i + cos t̂j) + bk̂√

a2 + b2
.

Exercise 2.2.1. Find an equation of the tangent line to the curve

r(t) = et cos t̂i + et sin t̂j, t ≥ 0

at the point corresponding to t = π
4 .

Definition 2.2.1. A space curve is said to be smooth if it has a parametrization r(t), t1 ≤ t ≤ t2,
satisfying the following conditions:

1. dr
dt exists and is a continuous function of t, for all values of t in the interval t1 ≤ t ≤ t2.

2. to distinct values of t in the interval t1 ≤ t ≤ t2 there corresponds distinct points r(t).

3. there is no value of t in the interval t1 ≤ t ≤ t2 for which dr
dt is the zero vector.

Examples of smooth curves are: lines, circles, parabolas, spirals, helices, etc.

Definition 2.2.2. We say that a space curve is piecewise smooth if r(t) has piecewise continuous
non-zero derivatives in t1 ≤ t ≤ t2. For example, the sides of a rectangle constitute a piecewise
smooth curve.

Definition 2.2.3. A space curve r(t), t1 ≤ t ≤ t2, is said to be closed if r(t1) = r(t2). If, in
addition, each point on the curve corresponds to one and only one value of the parameter t, other
than t = t1 and t = t2, then the curve is called a simple closed curve.

15



2.2.3 Arc length

Let C be a smooth curve represented by r(t) = x(t)̂i + y(t)̂j + x(t)k̂, t1 ≤ t ≤ t2. The arc length,
denoted by s(t), of the curve from the point corresponding to t = t1 to a point corresponding to
an arbitrary value of t ∈ [t1, t2] is given by the integral

s(t) =

∫ t

t1

√
[x′(τ)]2 + [y′(τ)]2 + [z′(τ)]2dτ. (2.25)

Example 2.2.1. Find the arc length of the curve represented by the equation

r(t) = et(cos t̂i + sin t̂j), 0 ≤ t ≤ π.

Solution
We have

r′(t) = et(cos t− sin t)̂i− et(sin t+ cos t)̂j

so that
|r(t)| =

√
2et.

Hence by (2.26) the arc length of the curve is

s(t) =

∫ π

0

√
2etdt =

√
2(eπ − 1).

Exercise 2.2.2. Find the arc length of

1. the curve
x = t, y = 2t+ 5, , z = 3t

between (0, 5, 0) and (1, 7, 3).

2. the curve
x = et cos t, y = et sin t, , z = 0

between t = 0 and t = 1.

3. the helix winding about the x-axis

y = sin 2πx, , z = cos 2πx

between (0, 0, 1) and (1, 0, 1).
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Since the integral in (2.25) is precisely the magnitude of dr(t)
dt , we can write (2.25) as

s(t) =

∫ t

t1

∣∣∣∣∣dr(τ)

dτ

∣∣∣∣∣dτ. (2.26)

Thus,

ds

dt
(t) =

∣∣∣∣∣drdt (t)

∣∣∣∣∣. (2.27)

Equation (2.27) implies that (
ds

dt

)2

=

∣∣∣∣∣drdt
∣∣∣∣∣
2

=
dr

dt
· dt. (2.28)

Hence, if we define the vector differential dr by the equation

dr = dx̂i + dyĵ + dzk̂ (2.29)

then we have

(ds)2 = dr · dr = (dx)2 + (dy)2 + (dz)2. (2.30)

The differential ds is called the element of arc length.

Exercise 2.2.3. 1. Find the length of the curve defined by

r(t) = sin t̂i + t̂j + (1− cos t)k̂

for 0 ≤ t ≤ 2π.

2. Find the length of the circular helix

r(t) = a(cos t̂i + sin t̂j) + btk̂

from 0 to 2π.

3. Let C be a curve in the xy-plane represented in polar coordinates by the equation

x = r cos θ, y = r sin θ, r = f(θ),

where f is a continuous differentiable function. Show that

(ds)2 = [f2(θ) + f ′
2
(θ)](dθ)2.
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Chapter 3

DIFFERENTIAL CALCULUS OF
SCALAR AND VECTOR FIELDS

3.1 Scalar Fields

If to each point (x, y, z) of a region, D, in space there is made to correspond a number f(x, y, z),
we say that f is a scalar field in the domain D.

3.1.1 Examples of scalar fields

1. The water pressure at each point in a sea.

2. f(x, y, z) = x+ 2y − z.

3. φ(r, s, t) = r2

4 + s2

9 + t2.

4. The density of atmospheric air in a room.

5. The electrostatic potential of the region between two condenser plates.

If f(x, y, z) is a scalar field, any surface defined by

f(x, y, z) = C, (3.1)

18



where C is a constant, is called an isotimic surface. In other words, an isotimic surface is a locus
of points at which the scalar function of the field assumes the same value.

Sometimes more specialised terms are used in place of ”isotimic surface”:

1. If f(x, y, z) denotes pressure, such surfaces are called isobaric surfaces.

2. If f(x, y, z) denotes temperature, the surfaces are called isothermal surfaces

3. If f(x, y, z) denotes electric or gravitational field potential, they are called equipotential sur-
faces

Let us consider the behavior of a scalar field in the neighborhood of a point (x0, y0, z0) within its
domain of definition. In many applications, it is often necessary to know the rate of change of f in
an arbitrary direction.

Definition 3.1.1. The derivative of f at (x0, y0, z0), denoted df
ds , where s is measured in the di-

rection of a vector u, if it exists, is called the directional derivative of f at (x0, y0, z0) in the
direction of a vector u.

In other words, the directional derivative of f is simply the rate of change of f , per unit distance
in some prescribed direction.

Note that the directional derivative df
ds will generally depend on the location of the point (x0, y0, z0)

and also on the prescribed direction u.

For a scalar field f , df
ds in the direction parallel to the x-axis with s measured as increasing in

the positive x-direction is conveniently denoted ∂f
∂x and is called the partial derivative of f with

respect to x. Similarly, df
ds in the direction parallel to the y-axis with s measured as increasing in

the positive y-direction is denoted ∂f
∂y and is called the partial derivative of f with respect to y; and

df
ds in the direction parallel to the z-axis with s measured as increasing in the positive z-direction is

denoted ∂f
∂z and is called the partial derivative of f with respect to z.

We define the directional derivative of f in a direction parallel to a vector u by

df

ds
=
∂f

∂x

dx

ds
+
∂f

∂y

dy

ds
+
∂f

∂z

dz

ds
(3.2)

provided the partial derivatives ∂f
∂x , ∂f

∂y and ∂f
∂z exist and are continuous throughout the region of

definition.

19



Observe that

û =
dx

ds
î +

dy

ds
î +

dz

ds
k̂ (3.3)

is a unit vector pointing in the direction in which s is measured. Hence, by defining the gradient
of f to be the vector

gradf =
∂f

∂x
î +

∂f

∂y
î +

∂f

∂z
k̂ (3.4)

we deduce that the right-hand side of (3.2) is the scalar product of gradf and û, thus

df

ds
= gradf · u. (3.5)

The gradient of a scalar field f is also commonly written as ∇f , where ∇ (known as the del
operator) denotes the vector differential operator

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
. (3.6)

In other words, grad f can be interpreted as the result of applying the differential operator ∇ to f .

Exercise 3.1.1. Prove that ∇(fg) = f∇g+ g∇f , for sufficiently continuous scalar fields f and g.

3.1.2 Some properties of the gradient

By definition the scalar product
∇f · û = |∇f ||û| cos θ,

where θ is the angle between ∇f and the unit vector û. Thus

df

ds
= |∇f | cos θ. (3.7)

We deduce, from (3.7), that

1. The directional derivative of a scalar field f at a point (x0, y0, z0) in the direction of the unit
vector û is simply the signed component of the gradient vector ∇f at (x0, y0, z0) along û.

2. The directional derivative is maximum when cos θ = 1, that is, when û is in the same direction
as ∇f .
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3. The maximum possible value of df
ds is given by |∇f |.

4. Through any point (x, y, z) where ∇f 6= 0, there passes an isotimic surface f(x, y, z) = c,
such that ∇f is normal/orthogonal to this surface at the point (x, y, z). The vector

n̂ =
∇f
|∇f |

is then a unit normal vector to the surface.

Example 3.1.1. Find the directional derivative of the scalar field

f(x, y, z) = x2 + y2 − z

in the direction of the vector 4̂i + 4ĵ− 2k̂, at the point (1, 1, 2).

Solution 3.1.1.
df

ds
= ∇f · û.

Now
∇f = 2x̂i + 2yĵ− k̂ = 2̂i + 2ĵ− k̂

at (1, 1, 2). A unit vector in the desired direction is

û =
1

3
(2̂i + 2ĵ− k̂).

Thus
df

ds
= (2̂i + 2ĵ− k̂) · (2

3
î +

2

3
ĵ− 1

3
k̂) = 3.

This means that the value of the scalar field f is increasing 3 units/unit distance, if we proceed
from (1, 1, 2) in the stated direction.

Example 3.1.2. The temperature of points in space is given by

f(x, y, z) = x2 + y2 − z.

1. A mosquito located at (1, 1, 2) desires to fly in such a direction that it will get cool as soon as
possible. In what direction should it fly?

2. Another mosquito is flying at a speed of 5 units of distance per second, in the direction of the
vector 4̂i + 4ĵ− 2k̂. What is its rate of increase of temperature, per unit time, at the instant
it passes through the point (1, 1, 2)?
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Solution 3.1.2. 1. To get cool as soon as possible, the mosquito should fly in the direction

−∇f(1, 1, 2) = −2̂i− 2ĵ + k̂,

from example (3.1.1).

2. The rate of increase of temperature per unit distance is

df

ds
= 3,

from example (3.1.1). The speed of flight of the mosquito is ds
dt = 5. Hence the rate of increase

of temperature per unit time will be given, using the chain rule, by

df

dt
=
df

ds

ds

dt
= 3× 5 = 15units/second.

Example 3.1.3. Find a unit vector normal to the surface

x2 + y2 − z = 6

at the point (2, 3, 7).

Solution 3.1.3. The surface x2 + y2 − z = 6 is an isotimic surface for the scalar field

f(x, y, z) = x2 + y2 − z.

So the unit vector normal to the given surface, at (2, 3, 7), is

∇f(2, 3, 7)

|∇f(2, 3, 7)|
=

4̂i + 6ĵ− k̂

|4̂i + 6ĵ− k̂|
=

1√
53

(4̂i + 6ĵ− k̂).

− 1√
53

(4̂i + 6ĵ− k̂) is also a correct answer. Why?

3.2 Vector Fields

Definition 3.2.1. A vector field F is a rule associating with each point (x, y, z) in a region
(domain) D.

22



3.2.1 Examples of vector fields

1. V(x, y, z) = x2yî− 2yz3ĵ + x2zk̂.

2. ∇f , where f is a scalar field.

3. The instantaneous velocity of a fluid at every point of a region in a river.

Any vector field may be written in terms of its components:

F(x, y, z) = F1(x, y, z)̂i + F2(x, y, z)̂j + F3(x, y, z)k̂. (3.8)

There are two basic concepts that arise in connection with the spatial rate of change of a vector
field F, namely the divergence of F and the curl of F.

Definition 3.2.2. The divergence of a vector field

F = F1î + F2ĵ + F3k̂

is a scalar field, denoted div F, defined by

div F =

(
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

)
·
(
F1î + F2ĵ + F3k̂

)
. (3.9)

We observe that in terms of the del operator ∇

divF = ∇ · F.

Thus,

divF = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

Note that ∇ · F 6= F · ∇. In fact the operator F · ∇ is meaningless alone.

Example 3.2.1. Find the divergence of the vector field

F = xey î + exy ĵ + sin (yz)k̂.

Solution 3.2.1.

div F = ∇ · F =
∂

∂x
(xey) +

∂

∂y
(exy) +

∂

∂z
(sin (yz))

= ey + xexy + y cos (yz).
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Definition 3.2.3. A vector field whose divergence is zero in a certain region is said to be solenoidal
or non-divergent in that region.

Roughly speaking, the divergence of a vector field is a scalar field that tells us, at each point
in the region of definition, the extend to which the field diverges or explodes from that point.

Definition 3.2.4. The curl of a vector field

F = F1î + F2ĵ + F3k̂,

denoted curl F, is the vector field defined by

curl F =

(
∂

∂x
î +

∂

∂y
ĵ +

∂

∂z
k̂

)
×
(
F1î + F2ĵ + F3k̂

)
(3.10)

Again we observe that in terms of the del operator ∇

curl F = ∇× F.

Hence,

curl F = ∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
î +

(
∂F1

∂z
− ∂F3

∂x

)
ĵ +

(
∂F2

∂x
− ∂F1

∂y

)
k̂.

Example 3.2.2. Find curl F, if

F = xyzî + x2y2z2î + y2z3k̂.

Solution 3.2.2.

curl F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

xyz x2y2z2 y2z3

∣∣∣∣∣∣ = (2yz3 − 2x2y2z)̂i + zyĵ + (2xy2z2 − xz)k̂.

Definition 3.2.5. A vector field with the property that its curl is identically zero is said to be
conservative.
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If a vector field F is conservative in a domain D, then there can be found a scalar field φ defined
in D such that

F = ∇φ,
and φ is called a scalar potential function of F.

Exercise 3.2.1. Show that F = 2xyî + (x2 + 1)̂j + 6z2k̂ is conservative, and hence find its corre-
sponding scalar potential φ.

The curl of a vector field is a vector field that gives us, at each point, an indication of how the
field rotates, or swirls, from that point.

3.2.2 The Laplacian

Definition 3.2.6. The Laplacian of a scalar field f , denoted by ∇2f , is defined by

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
. (3.11)

The Laplacian of f is also defined as the divergence of the gradient of f :

∇2f = div (grad f) = ∇ · (∇f) = ∇2f.

If f is a scalar field, then ∇2f(x, y, z) is a number that tells us something about the behaviour of
the scalar field in the vicinity of (x, y, z).

Definition 3.2.7. If φ is a scalar field such that

∇2φ = 0, (3.12)

then φ is said to be harmonic.

The partial differential equation (3.11) is called Laplace equation. It means that the average
value of f in any neighborhood of (x, y, z) will be exactly equal to the value of f .

Exercise 3.2.2. 1. Show that φ = 1
r is a solution to the Laplace equation ∇2φ = 0, where

r = |r| =
√
x2 + y2 + z2

2. If f = f(r), show that

∇2f(r) =
d2f

dr2
+

2

r

df

dr
.

Hence show that f(r) = α+ β
r is harmonic.
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Chapter 4

CURVILINEAR COORDINATE
SYSTEMS

In many applications of vector analysis it often becomes necessary to use coordinate systems other
than the Cartesian. In such situations, the representations of the gradient of a scalar field, the
divergence and curl of a vector field take on completely different forms. We shall therefore discuss,
in this chapter, the idea of a curvilinear coordinate system in preparation for the derivation of the
corresponding expressions for the gradient, the divergence, the curl and any other related applica-
tion in such a coordinate system.

Let u1, u2, u3 denote the new coordinates, which can possibly be interpreted as lengths, or an-
gles. Suppose that the new coordinates can be related to the Cartesian coordinates x, y, z by the
transformation equations

u1 = u1(x, y, z), u2 = u2(x, y, z), u3 = u3(x, y, z), (4.1)

such that the inverse transformation

x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3) (4.2)

exists. We call the ordered triple of numbers (u1, u2, u3) the curvilinear coordinates of the point
(x, y, z). The coordinates are generally not straight lines, as in the Cartesian coordinate system,
hence the term ”curvilinear”.
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4.1 Coordinate Surfaces and Coordinate curves

Suppose P is a point in space with curvilinear coordinates (u1, u2, u3). Then the equations

u1(x, y, z) = c1, u2(x, y, z) = c2, u3(x, y, z) = c3 (4.3)

define three surfaces in space each of which passes through the point P. We call the three surfaces
described by (4.3) the coordinate surfaces intersecting at the point P and each pair of these sur-
faces intersect in curves called coordinate curves. Thus, for example, the surfaces u2(x, y, z) = c2

and u3(x, y, z) = c3 intersect in the curve on which only u1 varies. Hence we call this curve the
u1-coordinate curve. The u2- and u3-coordinate curves are defined similarly. [TO BE ILLUS-
TRATED IN CLASS].

Using the inverse transformation (4.2), the position vector of a point in curvilinear coordinates
now has the representation

r(u1, u2, u3) = x(u1, u2, u3)̂i + y(u1, u2, u3)̂j + z(u1, u2, u3)k̂ (4.4)

It follows that the derivative ∂r
∂u1

represents the tangent vector to the u1-coordinate curve. Like-

wise, we have ∂r
∂u2

and ∂r
∂u3

representing the tangent vectors to the u2 and u3-coordinate curves,
respectively. On the other hand, the normal to the surfaces The coordinate surfaces ui(x, y, z) = ci,
i = 1, 2, 3, is the vector

∇ui =
∂ui
∂x

î +
∂ui
∂y

ĵ +
∂ui
∂z

k̂. (4.5)

Henceforth, we assume that the coordinates u1, u2, u3 are so labeled that the vectors ∂r
∂u1

, ∂r∂u2 ,
∂r
∂u3

,
in that order form a right-handed system.

Definition 4.1.1. Whenever the vector dr
du1

, drdu2 ,
dr
du3

are mutually perpendicular at every point, we
say that u1, u2, u3 comprise orthogonal curvilinear coordinates.

Any coordinate curve for ui intersects the isotimic surface ui(x, y, z) = ci at right angles when
u1, u2, u3 form orthogonal curvilinear coordinates. Consider the u1-coordinate curve, for instance:

1. this curve is the intersection of two surfaces u2(x, y, z) = c2 and u3(x, y, z) = c3. Hence, its
tangent ∂r

∂u1
is perpendicular to both ∇u2 and ∇u3.

2. the vector ∇u1 is also perpendicular to both ∇u2 and ∇u3, by definition of orthogonal
curvilinear coordinates.
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This implies that ∂r
∂u1

is parallel to ∇u1. Likewise ∂r
∂u2

and ∂r
∂u3

are parallel to ∇u2 and ∇u3, re-
spectively. It follows that ∇u1,∇u2,∇u3 also form a right-handed system of mutually orthogonal
vectors.

It is therefore natural to define a right-handed system of mutually orthogonal unit vectors ê1, ê2, ê3

in the u1, u2, u3 coordinate curves positive directions, respectively, by:

êi =
∇ui
|∇ui|

=
∂r

∂ui

/∣∣∣∣∣ ∂r

∂ui

∣∣∣∣∣, i = 1, 2, 3. (4.6)

The basic difference between curvilinear coordinates and Cartesian coordinates is that in the Carte-
sian coordinates, the unit vectors (in the respective directions of the coordinate curves) ê1, ê2, ê3

are constants for all points of space and are equal to 1̂, ĵ, k̂, respectively; in any other coordinate
system, the unit vectors will, generally speaking, change with position in space.

So at each point in space, we can define a set of unit vectors ê1, ê2, ê3 such that any arbitrary
vector F located at a particular point in space may be written in curvilinear component form as

F = F1ê1 + F2ê2 + F3ê3. (4.7)

In that case the coordinate curves are mutually orthogonal at every point and so are the corre-
sponding unit vectors. This is expressed by the conditions

ê1 · ê2 = 0, ê1 · ê3 = 0, ê2 · ê3 = 0. (4.8)

We also deduce that if u1, u2, u3 form a right-handed system then the corresponding unit vectors
ê1, ê2, ê3 also form a right-handed system and this is expressed by the conditions

ê1 × ê2 = ê3, ê1 × ê3 = ê2, ê2 × ê3 = ê1. (4.9)

4.1.1 Scale factors

Vector operations in general orthogonal curvilinear coordinates are usually expressed in terms of
functions known as scale factors, denoted by hi, i = 1, 2, 3.

Definition 4.1.2. The scale factor hi is defined to be the rate at which arc length increases on
the ith coordinate curve, with respect to ui. That is,

hi =

∣∣∣∣∣ ∂r

∂ui

∣∣∣∣∣, i = 1, 2, 3. (4.10)
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Equations (4.6) and (4.10) lead us to

∂r

∂ui
= hiêi. (4.11)

We can deduce another formula for the scale factors hi by making the following observations:

1. |∇ui| is the rate of change of ui with respect to distance in the direction of ∇ui.

2. The direction of ∇ui is the direction of the ui-coordinate curve.

It follows that

|∇ui| =
∂ui
∂si

=
1

hi
.

Hence

h1 =
1

|∇u1|
, h2 =

1

|∇u2|
, h3 =

1

|∇u3|
. (4.12)

Example 4.1.1. Consider the curvilinear coordinate system (u1, u2, u2) defined for z ≥ 0 by

x = u1 − u2, y = u1 + u2, z = u2
3.

1. Compute the corresponding unit vectors (ê1, ê2, ê3) and hence verify that the system is or-
thogonal and right-handed.

2. Compute the corresponding scale factors.

Solution 4.1.1. 1.

ê1 =
∂r

∂u1

/∣∣∣∣∣ ∂r

∂u1

∣∣∣∣∣ =
î + ĵ√

2
, ê2 =

∂r

∂u2

/∣∣∣∣∣ ∂r

∂u2

∣∣∣∣∣ =
−î + ĵ√

2
, ê3 =

∂r

∂u3

/∣∣∣∣∣ ∂r

∂u3

∣∣∣∣∣ =
2u3k̂

|2u3|
= k̂.

Now
ê1 · ê2 = 0, ê1 · ê3 = 0, ê2 · ê3 = 0,

hence the system is orthogonal. Further,

ê1 × ê2 = ê3, ê3 × ê1 = ê2, ê2 × ê3 = ê1,

and so the system is right-handed.
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2. The scale factors are

h1 =
1

|∇u1|
=
√

2, h2 =
1

|∇u2|
=
√

2, h3 =
1

|∇u3|
= 2u3.

Exercise 4.1.1. 1. Consider a spherical coordinate system (r, φ, θ) defined by the transforma-
tion equations

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ,

where
0 ≤ r ≤ ∞, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

Determine the scale factors and express the unit vectors êr, êφ, êθ in terms of î, ĵ, k̂. Hence
show that a spherical coordinate system is orthogonal and right-handed.

2. Consider a cylindrical coordinate system (r, θ, z) defined by the transformation equations

x = r cos θ, y = r sin θ, z = z,

where
0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π.

(a) Determine the scale factors and express the unit vectors êr, êθ, êz in terms of î, ĵ, k̂.
Hence show that a cylindrical coordinate system is orthogonal and right-handed.

(b) Represent the vector F = zî− 2xĵ + yk̂ in cylindrical coordinates.

The scale factors allow us to write the general formulas for arc length, area, volume, gradient,
divergence, curl, Laplacian, etc. in terms of curvilinear coordinates.

4.1.2 Arc length in general orthogonal curvilinear coordinates

In the general orthogonal curvilinear coordinates

dr =
∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3. (4.13)

Hence the differential element of arc length can be expressed as

ds = |dr| =

∣∣∣∣∣ ∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3

∣∣∣∣∣. (4.14)

Combining equations (4.7) and (4.9) we deduce that the displacement vector dr can be expressed
in terms of the scale factors by

dr = h1du1ê1 + h2du2ê2 + h3du3ê3. (4.15)
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Exercise 4.1.2. Verify (4.15).

Clearly, if the curve C is along the u1-coordinate curve, then

ds = ds1 = h1du1. (4.16)

We can similarly define the differential elements of length along the u2- and u1-coordinate curves
as

ds2 = h2du2, (4.17)

ds3 = h3du3, (4.18)

respectively.

Example 4.1.2. 1. In the Cartesian coordinate system the differential elements of arc length
along the coordinate curves are given by

ds1 = hxdx = dx, ds2 = hydy = dy, ds3 = hzdz = dz.

2. In the spherical coordinate system the differential elements of arc length along the coordinate
curves are given by

ds1 = hrdr = dr, ds2 = hφdφ = rdφ, ds3 = hθdθ = r sinφdθ.

Exercise 4.1.3. 1. Obtain the differential elements of arc length along the coordinate curves in
the cylindrical coordinate system.

2. By first finding the square of the element of arc length, (ds)2, in spherical coordinates deter-
mine the corresponding scale factors, hr, hφ, hθ.

4.1.3 The gradient in curvilinear coordinates

The component of the gradient of a scalar field f(u1, u2, u3) in the direction of the unit vector êi,
denoted grad f = ∇f , is given by df

ds1
(the rate of change of f with respect to distance in the êi

direction). Since ê1, ê2, ê3 are mutually orthogonal unit vectors, we can readily express grad f as

∇f =
df

ds1
ê1 +

df

ds2
ê2 +

df

ds3
ê3 =

du1

ds1

∂f

∂u1
ê1 +

du2

ds2

∂f

∂u2
ê2 +

du3

ds3

∂f

∂u3
ê3. (4.19)

Introducing the scale factors we have

∇f =
1

h1

∂f

∂u1
ê1 +

1

h2

∂f

∂u2
ê2 +

1

h3

∂f

∂u3
ê3. (4.20)
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This indicates the operator equivalence

∇ =
ê1

h1

∂

∂u1
+

ê2

h2

∂

∂u2
+

ê3

h3

∂

∂u3
(4.21)

in the coordinate system (u1, u2, u3).

Example 4.1.3. Compute the gradient of the scalar field

f(u1, u2, u3) = u1u2 + u2
3

in the coordinate system (u1, u2, u3) defined by

x = u1 − u2, y = u1 + u2, z = u2
3.

Solution 4.1.2.

∇f =

(
ê1

h1

∂

∂u1
+

ê2

h2

∂

∂u2
+

ê3

h3

∂

∂u3

)(
u1u2 + u2

3

)
=

1√
2
u2ê1 +

1√
2
u1ê2 + ê3.

Exercise 4.1.4. Derive the expressions for div F, curl F and ∇2F in generalised curvilinear
coordinates in terms of the scale factors and the unit vectors.
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Chapter 5

INTEGRAL CALCULUS OF
SCALAR AND VECTOR FIELDS

5.1 Line Integrals of Scalar Fields

Let f be a scalar field defined in a domain D of the xyz-space and let

r(t) = x(t)̂i + y(t)̂j + z(t)k̂, t1 ≤ t ≤ t2, (5.1)

represent a space curve C that lies in D. We assume that C is a smooth curve and that f is
continuous on C.

Recall that the arc length of C is given by

s(t) =

∫ t

t1

|r′(τ)|dτ, (t1 ≤ t ≤ t2) (5.2)

so that ds = |r′(t)|dt.

Definition 5.1.1. The line integral of f on C with respect to arc length, denoted by
∫
C fds, is

the integral ∫
C
f(x, y, z)ds =

∫ 2

t1

f [x(t), y(t), z(t)]|r′(t)|dt (5.3)

where
|r′(t)| =

√
[x′(t)]2 + [y′(t)]2 + [z′(t)]2.

33



Example 5.1.1. Evaluate the line integral of

f = x+ 2y

on a straight line
y = 2x

from the origin to the point (1, 2).

Solution 5.1.1. C is the line, represented by the vector equation

r(t) = t̂i + 2t̂j, 0 ≤ t ≤ 1.

Thus, ∫
C

(x+ 2y)ds =

∫ 1

0
(t+ 4t)|r′(t)|dt =

∫ 1

0
(t+ 4t)

√
5dt =

5
√

5

2
.

Example 5.1.2. Evaluate the line integral ∫
C
xyz ds,

where C is the helix
r(t) = cos t̂i + sin t̂j + tk̂, 0 ≤ t ≤ 2π.

Solution 5.1.2. Here
r′(t) = − sin t̂i + cos t̂j + k̂

so that |r′(t)| =
√

2. Thus ∫
C
xyz ds =

√
2

∫ 2π

0
t cos t sin tdt

=
√

2

[
t

2
sin2 t

]2π

0

−
√

2

2

∫ 2π

0
sin2 tdt

= −
√

2

2
π.

Exercise 5.1.1. In each of the following problems, calculate the line integral along the given curve:

1.
∫
C(x− y)2dx along the parabola y = x− x2/4 from (0, 0) to (4, 0).

2.
∫
C(x− y)2dx around a circle of radius a traced counterclockwise.

3.
∫
C(x2 + y2)dy around the ellipse x2

a2
+ y2

b2
= 1 traced counterclockwise.

4.
∫
C(xz+yz+xy)dy around the intersection of the cylinder x2 +y2 = 1 and the plane y+z = 1

in the clockwise direction as viewed from the origin.
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5.2 Line Integrals of Vector Fields

Definition 5.2.1. Let

F(x, y, z) = F1(x, y, z)̂i + F2(x, y, z)̂j + F3(x, y, z)k̂ (5.4)

be a vector field defined and continuous in a domain D, and let C be a smooth curve in D represented
by

r(t) = x(t)̂i + y(t)̂j + z(t)k̂, t1 ≤ t ≤ t2.

The line integral of F on C, denoted
∫
C F · dr, is the integral∫

C
F · dr =

∫ t2

t1

F[x(t), y(t), z(t)] · dr
dt
dt. (5.5)

Observe that the integral (5.5) is taken along the positive direction on the curve C. If the curve
is traversed in the opposite direction, the integral changes sign. If

F(x, y, z) = F1(x, y, z)̂i + F2(x, y, z)̂j + F3(x, y, z)k̂,

the integral (5.5) can also be written as∫
C

F · dr =

∫
C
F1dx+ F2dy + F3dz. (5.6)

Example 5.2.1. Compute the line integral
∫
C F · dr where

F = x2î + yĵ + (xz − y)k̂,

from (0, 0, 0) to (1, 2, 4)

1. along the line segment joining the two points.

2. along the curve given parametrically by

x = t2, y = 2t, z = 4t3.

Solution 5.2.1. 1. The parametric equations of the straight line joining (0, 0, 0) to (1, 2, 4) are

x = t y = 2t, z = 4t.
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Hence, ∫
C

F · dr =

∫
C
x2dx+ ydy + (xz − y)dz

=

∫ 1

0
t2dt+ (2t)(2dt) + (4t2 − 2t)(4dt)

=

∫ 1

0
(17t2 − 4t)dt

=
11

3
.

2. Exercise.

Observe that the line integral has been defined without reference to the parametrization of the
curve, so its value will depend only on the field F and the oriented curve C, and not on the choice
of the parameter.

Example 5.2.2. Calculate the line integral of

F(x, y, z) = yî− xĵ + zk̂

along the helix
C : r(θ) = cos θî + sin θĵ + θk̂, 0 ≤ θ ≤ π.

Solution 5.2.2. ∫
C

F · dr =

∫
C

F · dr
dt
dt

=

∫ π

0
(−1 + t)dt

= −π +
π2

2
.

If F represents a force field, then the work done by F in moving a particle from an initial point
to a final point of an oriented curve C is given by

W =

∫
C

F · dr. (5.7)

Example 5.2.3. Calculate the work done by a force

F(x, y) = x2yî + (x2 + y)̂j

in moving a particle from the origin to the point (2, 4) along the parabola y = x2.
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Solution 5.2.3. We can write the vector equation of the parabola as

r(x) = x̂i + x2ĵ,

and along the parabola the force field F is

F = x4î + 2x2ĵ.

Hence

Work done =

∫
C

F · dr

=

∫
C

F · dr
dx
dx

=

∫ 2

0
(4x4î + 2x2ĵ) · (̂i + 2xĵ)dx

=

∫ 2

0
(x4 + 4x3)dx =

112

5
units.

Exercise 5.2.1. Find the work done by the force field

F = x2î + 2xyĵ + yz2k̂

in moving a particle along the curve

x = t2, y = t2 + 1, z = t3, from t = 0 to t = 2.

Definition 5.2.2. If the curve C is closed, that is, its initial and final points coincide, then the
line integral of a vector field F around C, denoted

∮
C F · dr, is called the circulation of F about

C.

Example 5.2.4. Evaluate the line integral of

F = x2î + ĵ

around the circle C : x2 + y2 = 4.

Solution 5.2.4. We represent the circle C in polar coordinates as

x = 2 cos θ, y = 2 sin θ, 0 ≤ θ ≤ 2π.

Then we have ∮
C

F · dr =

∫ 2π

0
[(4 cos2 θ)(−2 sin θ)dθ + 2 sin θ(2 cos θ)dθ]

=

∫ 2π

0
(−8 cos2 θ sin θ + 4 sin θ cos θ)dθ = 0.
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Exercise 5.2.2. Evaluate the integral of

F = (x+ y2)̂i + (x+ z)̂j + xyk̂

from the origin to the point (1,−1, 1)

1. along the straight line joining the points

2. along the curve r(t) = t̂i− t2ĵ + t3k̂, (0 ≤ t ≤ 1).

The exercise above shows that the value of the line integral from (0, 0, 0, ) to (1,−1, 1) depends
on the path of integration.

5.2.1 Properties of line integrals

Suppose f and g are scalar fields and F and G are vector fields, all defined and continuous in a
domain containing the smooth curve C : r = r(t) (t1 ≤ t ≤ t2). Then for any constants c1 and
c2, we have

1. The linearity property of line integrals:∫
C

(c1f + c2g)ds = c1

∫
C
fds+ c2

∫
C
gds (5.8)

and ∫
C

(c1F + c2G) · dr = c1

∫
C

F · dr + c2

∫
C

G · dr. (5.9)

2. The additive property of line integrals. Suppose the curve C is comprised of n connected
smooth curves

C1 : r = r1(t) (t1 ≤ t ≤ t2), C2 : r = r2(t) (t2 ≤ t ≤ t3), · · · , Cn : r = rn(t) (tn ≤ t ≤ tn+1).

Then ∫
C
fds =

∫
C1

fds+

∫
C2

fds+ · · ·+
∫
Cn

fds (5.10)

and ∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr + · · ·+
∫
Cn

F · dr. (5.11)
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Example 5.2.5. Evaluate the integral∫
C
xdx− zdy + 2ydz,

where C consists of the line segments from the origin to the point (1, 1, 0) and from (1, 1, 0) to
(1, 1, 2).

Solution 5.2.5. Let C1 be the line segment from (0, 0, 0) to (1, 1, 0) and C2 be the line segment
from (1, 1, 0) to (1, 1, 2). Then on C1, x = y, z = 0, so that dx = dy, dz = 0. On C2, x = 1 = y so
that dx = 0 = dy. Hence we have∫

C
xdx− zdy + 2ydz =

∫
C1

xdx+

∫
C2

2ydz

=

∫ 1

0
xdx+

∫ 2

0
2dz =

9

2
.

Example 5.2.6. Evaluate the integral

I =

∮
C

(x2 + y)dx+ (y2 + z)dy + (z2 + x)dz

around the closed curve c consisting of the line segments

C1 : x+ z = 1 (0 ≤ x ≤ 1, y = 0) and C2 : x+ y = 1 (0 ≤ y ≤ 1, z = 0),

and the quarter circle
C3 : y2 + z2 = 1 (y ≥ 0, z ≥ 0)

in the counterclockwise direction.

Solution 5.2.6. On C1 we have y = 0, z = 1 − x so that dy = 0 and dz = −dx. Hence, using x
as a parameter, we find

I1 =

∫
C1

(x2 + y)dx+ (y2 + z)dy =

∫ 1

0
x2dx+ [(1− x)2 + x](−dx)

=

∫ 1

0
(x− 1)dx = −1

2
.

On C2, using y as a parameter, we have x = 1− y, z = 0, so that dx = −dy, dz = 0. Hence

I2 =

∫
C2

(x2 + y)dx+ (y2 + z)dy =

∫ 1

0
[(1− y)2 + y](−dy) + y2dy

=

∫ 1

0
(y − 1)dy = −1

2
.
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Finally, on C3 where x = 0, we set y = cos θ, z = sin θ (0 ≤ θ ≤ π/2). Then

I3 =

∫
C3

(y2 + z)dy + z2dz

=

∫ π/2

0
[(cos2 θ + sin θ)(− sin θ) + sin2 θ cos θ]dθ

=

∫ π/2

0
(− cos2 θ sin θ − sin2 θ + sin θ2 cos θ)dθ

=

[
cos3 θ

3
−

(
θ

2
− sin 2θ

4

)
+

sin3 θ

3

]π/2
0

= −π
4
.

Thus the line integral around the closed curve C is

I1 + I2 + I3 = −1− π

4
.

Exercise 5.2.3. Evaluate the line integral
∫
C ydx− xdy + zdz around the curve of intersection of

the cylinder x2 + y2 = a2 and the plane z − y = a taken in the counterclockwise direction.

5.2.2 Line integrals independent of path

Theorem 5.2.1. Let F be continuous in a domain D. The line integral of F is independent of the
path in D if and only if ∮

C
F · dr = 0 (5.12)

for any piecewise smooth simple closed curve C in D.

5.3 Oriented Surfaces

Just as it is possible to write the equation of a space curve C in parametric form, giving x, y
and z as functions of a single parameter t, it is possible to represent a two-dimensional surface S
parametrically by giving x, y and z as functions of two parameters, say u and v. Parametrically,
then, a surface S is represented by equations of the form

x = x(u, v), y = y(u, v), z = z(u, v) (5.13)
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where u and v are two parameters which range over some domain D in the uv-plane. The parametric
equations (5.13) can be combined into a single vector equation

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k. (5.14)

As the parameters u and v vary over D, the tip of the position vector r(u, v) generates the surface
S.

Example 5.3.1. A sphere of radius a and center at the origin may be represented parametrically
by the equations

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ (5.15)

where 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π.

5.3.1 Normal vector on a surface

Let S be a surface represented parametrically by

x = x(u, v), y = y(u, v), z = z(u, v)

where the functions x(u, v), y(u, v) and z(u, v) are continuous and have continuous derivatives in
the domain D of the uv-plane. Let us consider the position vector r(u, v) of a point (u0, v0) on S.
Then

r(u, v0) = x(u, v0)i + y(u, v0)j + z(u, v0)k

represents a curve on the surface with u as the parameter, whose tangent vector is given by

∂r(u, v0)

∂u
.

Similarly,
r(u0, v) = x(u0, v)i + y(u0, v)j + z(u0, v)k

represents another curve on the surface with its tangent vector given by

∂r(u0, v)

∂u
.

Since both tangent vectors are tangent to curves in the surface S, they are tangent to the surface
itself at the point (u0, v0). It follows that the vector

∂r(u0, v0)

∂u
× ∂r(u0, v0)

∂v
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is normal to the surface S at (u0, v0). In fact, a unit vector normal the surface S at (u0, v0) is

n̂ =
∂r(u0,v0)

∂u × ∂r(u0,v0)
∂v

|∂r(u0,v0)
∂u × ∂r(u0,v0)

∂v |
. (5.16)

We have, so far, derived two ways of computing the unit vector normal to the surface:

1. If the surface S is specified non-parametrically by f(x, y, z) = c, the

grad f

|grad f |
=
∇f
|∇f |

is a unit vector normal to S.

2. If the surface S is given parametrically through equations (5.13) or (5.14), then (5.16) is a
unit vector normal to S.

Example 5.3.2. Find a unit vector normal to the surface represented the equation

r(u, v) = u(cos vî + sin vĵ) + (1− u2)k̂, u ≥ 0, 0 ≤ v ≤ 2π.

Solution 5.3.1. The unit normal vector is

n̂ =
∂r
∂u ×

∂r
∂v

| ∂r∂u ×
∂r
∂v |

=
(cos vî + sin vĵ− 2uk̂)× u(− sin vî + cos vĵ)

|(cos vî + sin vĵ− 2uk̂)× u(− sin vî + cos vĵ)|
=

2u2(cos vî + sinV ĵ) + uk̂

u
√

4u2 − 1

=
2u(cos vî + sinV ĵ) + uk̂√

4u2 − 1
.

We say that a surface S, defined by the equation

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k,

is smooth if ∂r
∂u and ∂r

∂v are continuous and the normal vector ∂r
∂u ×

∂r
∂v is not zero at any point on

S. If a surface is not smooth but consists of a finite number of surfaces each of which is smooth,
then the surface is said to be piecewise smooth.

Example 5.3.3. The surface defined by a sphere is smooth and the faces of a cube constitute a
piecewise smooth surface.
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A surface S is said to be closed if it has no boundary, otherwise it is a two-sided surface.
At every point on a smooth surface there will, of course, be two choices for the unit normal vector
n̂:

n̂ =
∇f
|∇f |

and − n̂ =
∇f
|∇f |

or
∂r(u0,v0)

∂u × ∂r(u0,v0)
∂v

|∂r(u0,v0)
∂u × ∂r(u0,v0)

∂v |
and −

∂r(u0,v0)
∂u × ∂r(u0,v0)

∂v

|∂r(u0,v0)
∂u × ∂r(u0,v0)

∂v |
.

If S is two-sided, that is, it has a boundary, then (following the right-hand rule) the side of S on
the ”upward” direction is called ”positive” n̂ side of the surface. Otherwise, if S is closed then by
convention n̂ is chosen to point outward.

Exercise 5.3.1. 1. Find a parametric representation of each of the following surfaces:

(a) The pale ax+ by + cz + d = 0.

(b) The parabolic cylinder x = x2.

(c) The elliptic paraboloid x2

a2
+ y2

b2
= 1− z.

(d) The ellipsoid x2

a2
+ y2

b2
+ z2

c2
.

2. Determine a unit normal vector to each of the following surfaces, at the given point:

(a) r(u, v) = u cos vî + u sin vĵ + u2k̂ at (0,−1, 2).

(b) r(u, v) = u cos vî + u sin vĵ + uk̂ at (
√

3, 1, 2).

(c) r(φ, θ) =
√

2(sinφ cos θ)̂i + 2
√

2(sinφ sin θ)̂j + (
√

3 cosφ)k̂ at (1/2, 1, 3/2).

(d) r(u, v) = 2(u+ v)̂i + (u− v)̂j + uvk̂ at (2,−3,−2).

(e) r(u, v) = 2(sinu cosh v)̂i + 3(cosu cosh v)̂j + (sinh v)k̂ at (1, 3
√

3/2, 0).

5.3.2 Surface area

Definition 5.3.1. Let S be a smooth surface represented by

r = r(u, v),

where r(u, v) is continuously differentiable in D. The area of the surface S is given by

A =

∫ ∫
D

∣∣∣∣∣∂r

∂u
× ∂r

∂v

∣∣∣∣∣dudv. (5.17)
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The formula

dS =

∣∣∣∣∣∂r

∂u
× ∂r

∂v

∣∣∣∣∣dudv (5.18)

is called the element of surface area on S.

Example 5.3.4. Find the surface area of the surface defined by the equations

x = cos θ, y = sin θ, z = t

for 0 ≤ θ ≤ 2π, 0 ≤ t ≤ 1.

Solution 5.3.2. The required surface area is

A =

∫ ∫
D

∣∣∣∣∣∂r

∂θ
× ∂r

∂t

∣∣∣∣∣dθdt
=

∫ 1

0

∫ 2π

0
|(− sin θî + cos θĵ)× (k̂)|dθdt

=

∫ 1

0

∫ 2π

0
|(cos θî + sin θĵ)|dθdt

=

∫ 1

0

∫ 2π

0
(cos2 θ + sin2 θ)1/2dθdt = 2π.

Exercise 5.3.2. 1. Verify that the surface area of a sphere of radius a parametrized in terms of
its latitude and longitude angles φ and θ through the equations:

x = a sinφ cos θ, y = a sinφ sin θ, z = a cosφ

where 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π, is 4πa2.

2. Find the surface area of a circular cone

r(t, θ) = t cos θî + t sin θĵ + tk̂, 0 ≤ t ≤ a, 0 ≤ θ ≤ 2π.

If the surface is represented by the equation of the form

z = z(x, y)

where (x, y) ranges over a domain D∗ on the x, y-plane, we may use x and y as parameters and
write

r(x, y) = x̂i + yĵ + z(x, y)k̂.
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then
∂r

∂x
= î +

∂z

∂x
k̂,

∂r

∂y
= ĵ +

∂z

∂y
k̂

so that ∣∣∣∣∣∂r

∂x
× ∂r

∂y

∣∣∣∣∣ =

∣∣∣∣∣− ∂z

∂x
î− ∂z

∂y
ĵ + k̂

∣∣∣∣∣
=

√√√√1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

.

Hence, alternatively, the surface area of the surface S is given by

A =

∫ ∫
D∗

√√√√1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (5.19)

so that

dS =

√√√√1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy. (5.20)

Notice that the integral (5.19) is to be integrated over the domain D∗ which is the projection of S
onto the x, y-plane. The formula (5.20) has an interesting an important application. Recall that a
unit normal vector on the surface is given by

n̂ =
− ∂z
∂x î− ∂z

∂y ĵ + k̂√√√√( ∂z
∂x

)2

+

(
∂z
∂y

)2+1
.

If γ denotes the angle between n̂ and k̂, then

cos γ = n̂ · k̂ =
1√√√√( ∂z

∂x

)2

+

(
∂z
∂y

)2

+ 1

.

Hence, by (5.21) we have

dS =
dxdy

cos γ
(5.21)

and so (5.19) can be written as

A =

∫ ∫
D∗

dxdy

cos γ
. (5.22)
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5.4 Surface Integrals

We now study the integration of a scalar or a vector field on a surface.

5.4.1 Surface integral of a scalar field

Definition 5.4.1. Let f be a scalar field defined and continuous in a domain D. Let S be a smooth
surface in D represented by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k,

where r(u, v) is continuously differentiable over S. The surface integral of f on S is defined by∫ ∫
S
f(x, y, z)dS =

∫ ∫
S
f [x(u, v), y(u, v), z(u, v)]

∣∣∣∣∣∂r

∂u
× ∂r

∂v

∣∣∣∣∣dudv. (5.23)

If S is piecewise smooth, we define the surface integral of f on S as the sum of the integrals
over the pieces of smooth surfaces comprising S.

for a surface that is represented by an equation of the form z = z(x, y), (x, vy) ranges over the
projection D∗ of the surface on the x, y-plane, the integral (5.23) can be written as∫ ∫

S
f(x, y, z)dS =

∫ ∫
S
f(x, y, z(x, y))

dxdy

cos γ
(5.24)

where

cos γ =
1√√√√( ∂z

∂x

)2

+

(
∂z
∂y

)2

+ 1

.

Similarly, if the surface can be represented by the equation of the form x = x(y, z) or y = y(x, z),
the integral (5.23) can be written as∫ ∫

S
f(x, y, z)dS =

∫ ∫
S
f(x(y, z), y, z)

dydz

cosα
(5.25)

or ∫ ∫
S
f(x, y, z)dS =

∫ ∫
S
f(x, y(x, z), z)

dxdz

cosβ
(5.26)
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where

cosα =
1√√√√1 +

(
∂x
∂y

)2

+

(
∂x
∂z

)2
, cosβ =

1√√√√1 +

(
∂y
∂x

)2

+

(
∂y
∂z

)2
.

Example 5.4.1. Find the surface integral of

f(x, y, z) = xy + z

on the upper half of a sphere of radius a.

Solution 5.4.1. We represent the surface by

S : r(φ, θ) = a sinφ cos θî + a sinφ sin θĵ + a cosφk̂,

where
0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π.

Then ∫ ∫
S
fdS =

∫ ∫
S

[(a sinφ cos θ)(a sinφ sin θ) + a cosφ]

∣∣∣∣∣ ∂r

∂φ
× ∂r

∂θ

∣∣∣∣∣dφdθ
=

∫ 2π

0

∫ π/2

0
[(a sinφ cos θ)(a sinφ sin θ) + a cosφ]a2 sinφdφdθ

=

∫ 2π

0

∫ π/2

0
(a4 sin3 φ cos θ sin θ + a3 cosφ sinφ)dφdθ = πa3.

Surface integrals of scalar fields occur in many physical problems. For example, suppose we
have a thin sheet of material in the shape of a surface S whose density at each point (x, y, z) is
given by ρ(x, y, z). Then the mass of the material is given by the surface integral

M =

∫ ∫
S
ρ(x, y, z)dS. (5.27)

5.4.2 Surface integral of a vector field

Definition 5.4.2. Let F be a vector field defined and continuous in a domain D, and let S be a
smooth oriented surface in D represented by r = r(u, v) where r(u, v) is continuously differentiable
in D. The surface integral of F, also known as the flux of F, on S is given by∫ ∫

S
F · n̂dS =

∫ ∫
S

F · ∂r

∂u
× ∂r

∂v
dudv. (5.28)
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If S is piecewise smooth, we define the surface integral (5.28) as the sum of the integrals over
the smooth surfaces comprising the surface S. When S is closed it is customary to take n̂ to be
the outward unit normal vector.

If the surface S is represented by z = z(x, y), (x, y) ∈ D∗, so that dS = dxdy
cos γ , then the inte-

gral (5.23) can also be written in the form∫ ∫
S

F · n̂dS =

∫ ∫
S

F · n̂dxdy
cos γ

. (5.29)

Corresponding formulas can also be obtained using the relation

dS =
dydz

cosα
or dS =

dxdz

cosβ
,

whenever the surface S can be represented by x = x(y, z) or y = y(x, z).

Example 5.4.2. Calculate the flux of the vector field

F(x, y, z) = x̂i + yĵ + 3zk̂

on the surface

S : r(u, v) = a(cos ûi + sinuĵ) + vk̂, 0 ≤ u ≤ π, 0 ≤ v ≤ π.

Solution 5.4.2. On the surface S we have

∂r

∂u
× ∂r

∂v
= a(cos ûi + sinuĵ)

and
F = a(cos ûi + sinuĵ) + 3vk̂.

Hence

Flux of F =

∫ ∫
S

F · n̂dS =

∫ π

0

∫ π

0
F · ∂r

∂u
× ∂r

∂v
dudv = a2π2.

Exercise 5.4.1. 1. Given
F = x̂i− yĵ,

find the value of
∫ ∫

S F · n̂dS over the closed surface S made up of the planes z = 0, z = 1
and the cylinder x2 + y2 = a2, where n̂ is the unit outward normal

(a) directly.

(b) by converting to cylindrical coordinates.

2. Consider the surface S given parametrically by

x = 2u+ v, y = u2, z = u− v, where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

Evaluate the flux of the field F = x̂i + y2ĵ across this surface.
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5.5 Volume Integrals

Consider a scalar field f defined within and on the boundary of a region V . we define the volume
integral of f over V , if it exists, to be∫ ∫ ∫

V
f(x, y, z)dV =

∫ ∫ ∫
V
f(x, y, z). (5.30)

In the general curvilinear coordinates (u1, u2, u3) the element of volume dV is expressed as

dV = ds1ds2ds3. (5.31)

Thus

dV = (h1du1)(h2du2)(h3du3). (5.32)

Thus, in the Cartesian coodinate system

dV = dxdydz; (5.33)

in cylindrical coordinates

dV = rdrdθdz; (5.34)

and in spherical coordinates

dV = r2 sinφdrdφdθ. (5.35)

Example 5.5.1. If
f(x, y, z) = 4x+ xz,

evaluate
∫ ∫ ∫

V fdV over the rectangular solid bounded by

x = 0, x = 2, y = 0, y = 2, z = 0, z =
3

2
.

Solution 5.5.1.∫ ∫ ∫
V
fdV =

∫ ∫ ∫
V

(4x+ xz)dxdydz (anyorderofintegrationiscorrect).

Now ∫ ∫ ∫
V

(4x+ xz)dxdydz =

∫ 3/2

0

∫ 1

0

∫ 2

0
(4x+ xz)dxdydz

=

∫ 3/2

0

∫ 1

0
[2x2 +

1

2
x2z]20dydz
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=

∫ 3/2

0

∫ 1

0
(8 + 2z)dydz

=

∫ 3/2

0
[8y + 2zy]10dz

=

∫ 3/2

0
(8 + 2z)dz

=
57

4
.

If f = 1, the
∫ ∫ ∫

V gives the volume of the region V .

Example 5.5.2. By evaluating a volume integral of the form∫ ∫ ∫
V

deduce the volume of a sphere V of radius ρ.

Solution 5.5.2.

V olume =

∫ ∫ ∫
V
dV.

Now if V is a sphere of radius ρ, working with spherical coordinates (r, φ, θ) we have

dV = r2 sinφdrdφdθ where 0 ≤ r ≤ ρ, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.

Hence

V olume =

∫ 2π

0

∫ π

0

∫ ρ

0
r2 sinφdrdφdθ

=
4

3
πρ3.

Exercise 5.5.1. Deduce the volume of a cylinder V of cross-sectional radius rho and length l, by
evaluating a suitable volume integral.

It is often helpful to sketch the region of integration first, then use it to determine the limits
and a ”convenient” order of integration.

Example 5.5.3. Sketch the region whose volume is represented by the triple integral∫ 2

0

∫ 3

0

∫ √9−y2

0
dxdydz.

Exercise 5.5.2. Find the volume integral of f(x, y, z) = x + yz over the box bounded by the
coordinate planes, x = 1, y = 2 and z = 1 + x.
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Chapter 6

INTEGRAL THEOREMS

This chapter covers three remarkable theorems which are central to the study of vector calculus,
and these are Green’s theorem, Stokes’ theorem and the divergence theorem.

6.1 Green’s Theorem

The theorem converts the line integral of a vector field around a simple closed curve in a domain
of the x, y-plane into a double integral over the domain enclosed by the curve.

Theorem 6.1.1. Green’s Theorem: Let D be a domain in the x, y-plane bounded by a piecewise
smooth simple closed curve C. If F1(x, y), F2(x, y) and their first partial derivatives are continuous
in D and on C, then ∮

C
F1dx+ F2dy =

∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy (6.1)

where C is taken in the positive (counterclockwise) direction.

Example 6.1.1. Verify Green’s theorem in the plane for∮
C

(xy + y2)dx+ x2dy

where C is the closed curve of the region bounded by y = x and y = x2.
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Solution 6.1.1. Green’s theorem:∮
C
F1dx+ F2dy =

∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy.

For the line integral (left-hand side)
∮
C F1dx+ F2dy, the closed curve C is consists of two smooth

curves C1 : y = x2, from x = 0 to x = 1 and C2 : y = x, from x = 1 back to x = 0;
and F1 = xy + y2, F2 = x2.
Along C1 : y = x2 the line integral is∫

C1

F1dx+ F2dy =

∫
C1

[x(x2) + x4]dx+)x2)(2xdx)

=

∫ 1

0
(3x3 + x4)dx =

19

20
.

Along C2 : y = x the line integral is∫
C2

F1dx+ F2dy =

∫
C2

[(x)(x) + x2]dx+ x2dx

=

∫ 0

1
3x2 = −1.

Hence ∮
C
F1dx+ F2dy =

∫
C1

F1dx+ F2dy +

∫
C2

F1dx+ F2dy = − 1

20
.

For the surface integral (right-hand side)
∫ ∫

D

(
∂F2
∂x −

∂F1
∂y

)
dxdy, D is the region between the curves

y = x2 and y = x. Thus∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫ 1

x=0

∫ x

y=x2

[
∂(x2

∂x
− ∂(xy + y2

∂y

]
dydx

=

∫ 1

x=0

∫ x

y=x2
(x− 2y)dydx

=

∫ 1

x=0
[xy − y2]10dx

=

∫ 1

x=0
(x4 − x3)dx

=

[
x5

5
− x4

4

]1

0

= − 1

20
,

thus verifying Green’s theorem.
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Exercise 6.1.1. 1. Use Green’s theorem to evaluate

(a) ∮
C

(x+ y)dx− 2xdy

where C is the unit circle x2 + y2 = 1, traced in the counterclockwise direction.

(b) ∮
C

(x+ 2y)dx+ xydy

where C is the ellipse x2 + 4y2 = 4, traced in the counterclockwise direction.

(c) ∮
C

(x+ y2)dx− xydy

where C is the sides of the square with vertices at (1, 0), (0, 1), (−1, 0), (0,−1), traced
in the counterclockwise direction.

(d) ∮
C

(x cosx− ey)dx− (y2 + xey)dy,

where C is any piecewise smooth simple closed curve.

2. Verify Green’s theorem for the line integral∮
C

2xy3dx+ 4x2y2dy,

where C is the boundary of the region in the first quadrant bounded by x = 1, y = x3 and the
x-axis.

6.2 Stokes’ Theorem

Observe that Green’s theorem in the plane can be written in the form∮
C

F · dr =

∫ ∫
D

(∇× F) · k̂dxdy,

where F(x, y) = F1(x, y)̂i + F2(x, y)̂j and D is a plane domain bounded by a simple closed curve
C. The extension of Green’s theorem to three dimensional vector fields leads to what is known as
Stokes’ theorem.
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Theorem 6.2.1. Stokes’ Theorem: Let S be a piecewise smooth orientable surface bounded by
a piecewise smooth simple closed curve C. If F(x, y, z) = F1(x, y, z)̂i + F2(x, y, z)̂j + F3(x, y, z)k̂ is
continuously differentiable in a domain containing S and C, then∮

C
F · dr =

∫ ∫
S

(∇× F) · n̂dS, (6.2)

where C is traversed in the positive (counterclockwise) direction and n̂ is the positive normal vector
to S, determined by the orientation of S according to the right-hand rule.

In other words, Stokes’ theorem says that the surface integral of the normal component of the
curl of a vector field F, taken over a bounded surface S, equals the line integral of the filed, taken
over the closed curve C bounding the surface.

Example 6.2.1. By means of Stokes’ theorem, evaluate
∮
C F ·dr around the ellipse C : x2 +y2 =

1, z = y, where
F = x̂i + (x+ y)̂j + (x+ y + z)k̂.

Solution 6.2.1. According to Stokes’ theorem∮
C

F · dr =

∫ ∫
S

(∇× F) · n̂dS,

where S is the region bounded by (and including) the ellipse C : x2 + y2 = 1, z = y.

∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

x x+ y x+ y + z

∣∣∣∣∣∣
= î− ĵ + k̂.

In parametric form (polar coordinates, r and θ),

S : x = r cos θ, y = r sin θ, z = y = r sin θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

Hence,
∂r

∂r
× ∂r

∂θ
= (cos θî + sin θĵ + sin θk̂)× (−r sin θî + r cos θĵ + r cos θk̂)

= −rĵ + rk̂.

Therefore ∮
C

F · dr =

∫ ∫
S

(∇× F) · n̂dS
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=

∫ 2π

θ=0

∫ 1

r=0
(̂i− ĵ + k̂) · (−rĵ + rk̂)drdθ

=

∫ 2π

θ=0

∫ 1

r=0
2rdrdθ = 2π or − 2π,

depending on the direction.

Exercise 6.2.1. Use Stokes’ theorem to evaluate

1.
∮
C(2xy2 + sin z)dx+ 2x2ydy + x cos zdz, around the curve

C : x = cos t, y = sin t, z = sin t, 0 ≤ t ≤ 2π,

directed with increasing t.

2.
∮
C(3x+ 4y)dx+ (2x+ 3y2)dy around the circle C : x2y2 = 4.

6.3 The Divergence Theorem

The divergence theorem, also called Gauss’ theorem, establishes an important relationship between
an integral over a volume to an integral over the surface which binds the volume.

Theorem 6.3.1. The Divergence Theorem If V is the volume bounded by a closed surface S
and F is a continuously defferentiable vector field in a domain containing S, then∫ ∫

S
F · n̂dS =

∫ ∫ ∫
V
∇ · FdV, (6.3)

where n̂ is the positive unit vector normal to S.

Example 6.3.1. Evaluate, via the divergence theorem,
∫ ∫

S F · n̂dS, where

F = 4xzî− y2ĵ + yzk̂

and S is the surface of the cube bounded by

x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
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Solution 6.3.1. ∫ ∫
S

F · n̂dS =

∫ ∫ ∫
V
∇ · FdV

=

∫ ∫ ∫
V

[
∂

∂x
(4xz) +

∂

∂y
(−y2) +

∂

∂z
(yz)

]
dV

=

∫ 1

0

∫ 1

0

∫ 1

0
(4z − y)dV =

3

2
.

Exercise 6.3.1. Verify the divergence theorem for F = 2x2î− 3yĵ + z2k̂, where S is the cylinder

x2 + y2 = 9, z = 0, z = 2.
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